Authorship Verification based on Syntax Features
نویسندگان
چکیده
Authorship verification is wildly discussed topic at these days. In the authorship verification problem, we are given examples of the writing of an author and are asked to determine if given texts were or were not written by this author. In this paper we present an algorithm using syntactic analysis system SET for verifying authorship of the documents. We propose three variants of two-class machine learning approach to authorship verification. Syntactic features are used as attributes in suggested algorithms and their performance is compared to established word-lenth distribution features. Results indicate that syntactic features provide enough information to improve accuracy of authorship verification algorithms.
منابع مشابه
Enhancing Authorship Attribution By Utilizing Syntax Tree Profiles
The aim of modern authorship attribution approaches is to analyze known authors and to assign authorships to previously unseen and unlabeled text documents based on various features. In this paper we present a novel feature to enhance current attribution methods by analyzing the grammar of authors. To extract the feature, a syntax tree of each sentence of a document is calculated, which is then...
متن کاملSource Code Authorship Attribution Using Long Short-Term Memory Based Networks
Machine learning approaches to source code authorship attribution attempt to find statistical regularities in human-generated source code that can identify the author or authors of that code. This has applications in plagiarism detection, intellectual property infringement, and post-incident forensics in computer security. The introduction of features derived from the Abstract Syntax Tree (AST)...
متن کاملOBA2: An Onion approach to Binary code Authorship Attribution
A critical aspect of malware forensics is authorship analysis. The successful outcome of such analysis is usually determined by the reverse engineer’s skills and by the volume and complexity of the code under analysis. To assist reverse engineers in such a tedious and error-prone task, it is desirable to develop reliable and automated tools for supporting the practice of malware authorship attr...
متن کاملAuthorship Identification in Large Email Collections: Experiments Using Features that Belong to Different Linguistic Levels - Notebook for PAN at CLEF 2011
The aim of this paper is to explore the usefulness of using features from different linguistic levels to email authorship identification. Using various email datasets provided by PAN’11 lab we tested several feature groups in both authorship attribution and authorship verification subtasks. The selected feature groups combined with Regularized Logistic Regression and One-Class SVMmachine learni...
متن کاملShallow Text Analysis and Machine Learning for Authorship At- tribution
Current advances in shallow parsing and machine learning allow us to use results from these fields in a methodology for Authorship Attribution. We report on experiments with a corpus that consists of newspaper articles about national current affairs by different journalists from the Belgian newspaper De Standaard. Because the documents are in a similar genre, register, and range of topics, toke...
متن کامل